

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

FTIR Spectral Study of Intramolecular Hydrogen Bonding in Thromboxane A₂ Receptor Antagonist S-145 and Related Compounds. Part 4

Mamoru Takasuka^a; Fumihiko Watanabe^a; Masumi Yamakawa^a

^a Shionogi Research Laboratories, Shionogi & Co., Ltd., Osaka, Japan

To cite this Article Takasuka, Mamoru , Watanabe, Fumihiko and Yamakawa, Masumi(1993) 'FTIR Spectral Study of Intramolecular Hydrogen Bonding in Thromboxane A₂ Receptor Antagonist S-145 and Related Compounds. Part 4', Spectroscopy Letters, 26: 6, 1023 — 1037

To link to this Article: DOI: 10.1080/00387019308011590

URL: <http://dx.doi.org/10.1080/00387019308011590>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

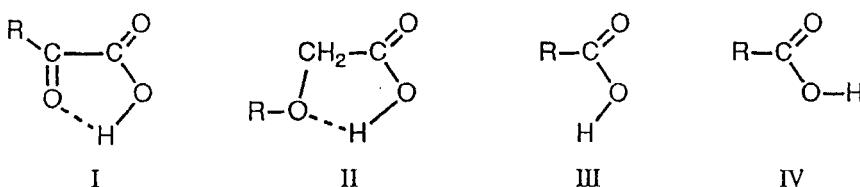
**FTIR SPECTRAL STUDY OF INTRAMOLECULAR
HYDROGEN BONDING IN THROMBOXANE A₂
RECEPTOR ANTAGONIST S-145 AND
RELATED COMPOUNDS. PART 4**

Key Words: Intramolecular Hydrogen Bonding, Carboxylic Acid,
Large-membered Ring, FTIR Spectra, Curve-fitting
Calculation

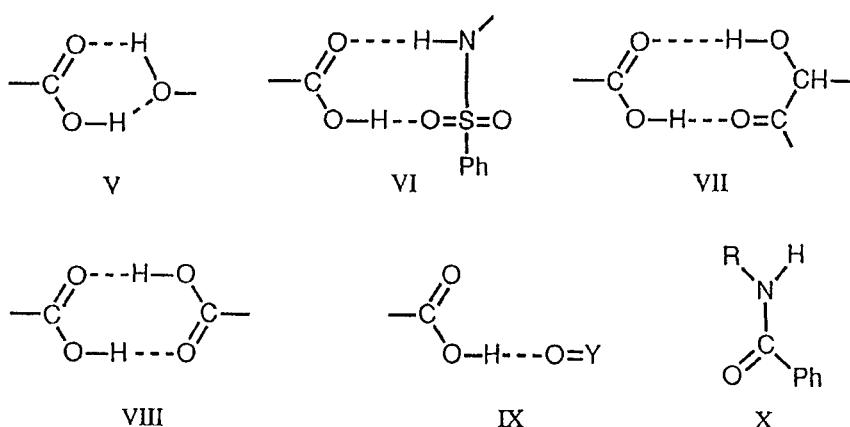
**MAMORU TAKASUKA,* FUMIHIKO WATANABE and
MASUMI YAMAKAWA**

Shionogi Research Laboratories, Shionogi & Co., Ltd.,
Fukushima-ku, Osaka 553, Japan

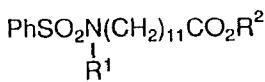
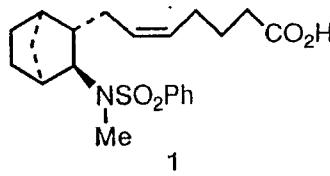
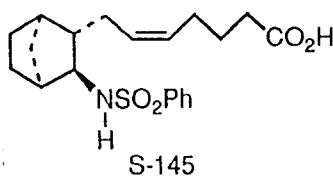
ABSTRACT


An *N*-methylated compound of S-145, (\pm)-(5Z)-7-[3-*endo*-[*N*-methyl]phenylsulphonyl]amino]bicyclo[2.2.1]hept-2-*exo*-yl]heptenoic acid 1, its chain analogue 12-[*N*-methyl(phenylsulphonyl)amino]dodecanoic acid 3, (\pm)-(5Z)-7-[3-*endo*-(benzoylamino)bicyclo[2.2.1]hept-2-*exo*-yl]heptenoic acid 5 and related compounds were synthesized in order to study the formation of a new class of intramolecular hydrogen

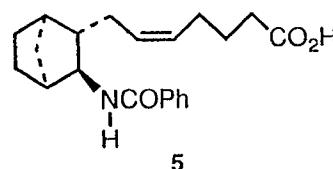
bond IX (*cis*-CO₂H···O=Y). Their FTIR spectra were measured in dilute CCl₄ solution and subjected to curve analysis in order to separate overlapping absorption bands. For compounds 1, 3 and 5, the intramolecular hydrogen bonds of the IX type involving 14-, 17- and 14-membered rings were found between a carboxyl group, which takes a *cis*-structure IV, and an oxygen atom of a sulphonyl or benzoylamino group, respectively. The C=O stretching vibration bands of these carboxyl groups shifted to lower wavenumbers (*ca.* 19 cm⁻¹). The direction of these shifts was contrary to that found for α -keto and α -alkoxycarboxylic acids in which carboxyl groups take a *trans*-structure III due to the formation of intramolecular hydrogen bonds I and II, respectively.


INTRODUCTION

The OH and C=O stretching (ν_{OH} and $\nu_{\text{C=O}}$) bands in carboxylic acids RCO₂H in dilute CCl₄ solution provide useful information not only on the nature of the substituent R, but also on the molecular conformation.¹⁻⁴ For only compounds with $n = 1$ in RCO(CH₂)_{n-1}CO₂H and RO(CH₂)_nCO₂H, the ν_{OH} bands have been reported to shift to lower wavenumbers because their carboxyl groups form intramolecular hydrogen bonds I and II to the proton accepting groups at the α -position, respectively.¹⁻⁴ The $\nu_{\text{C=O}}$ bands of these carboxyl groups which take a *trans*-structure III have been also reported to shift to higher wavenumbers (*ca.* 30 cm⁻¹), compared with those at *ca.* 1760 cm⁻¹ observed for aliphatic acids which take the *cis*-




structure IV.²⁻⁴ A similar higher shift of the $\nu_{C=O}$ band was observed for pyruvic acid,⁵ glyolic acid⁶ and glycolic acid⁷ in the Ar matrix and α -phenoxybenzoic acids in dilute CCl_4 solution.⁸ The *cis*-carboxyl group IV is more stable than the *trans*-one III unless carboxylic acids form the intramolecular hydrogen bond of the I or II type.¹⁻⁴ This was theoretically supported by the ab initio MO calculations.⁹

Recently, we found¹⁰⁻¹⁴ that a thromboxane A₂ receptor agonist U-46619,^{15,16} its antagonists S-145¹⁷ and ONO-3807,¹⁸ chain analogues of S-145 [$PhSO_2NH(CH_2)_nCO_2H$ ($n = 6-11$)] and ω -alkane-dicarboxylic acids [$HO_2C(CH_2)_nCO_2H$ ($n = 10-14$)] in dilute CCl_4 solution form cyclic intramolecular hydrogen bonds V-VII, VI and VIII involving large rings of more than 9 members which link between the


cis-carboxyl and functional or *cis*-carboxyl groups, respectively. The hydrogen-bonded ν_{OH} and $\nu_{\text{C=O}}$ band of these carboxyl groups shifted to lower wavenumbers, analogous to the case of the carboxylic acid dimer.¹⁹ Furthermore, we have taken an interest in chain compounds containing the non-vicinal carboxyl group and a Y=O bond such as prostaglandin-related compounds because they are expected to form an intramolecular hydrogen bond of the IX type in which the carboxyl group takes the *cis*-structure. However, no information is available on the intramolecular hydrogen bond of this type except for the intermolecular hydrogen bond mentioned below.²⁰ Thus, in order to study the intramolecular hydrogen bond of the IX type, we synthesized S-145 and 1-5 and measured FTIR spectra of 1 and 3-5 in dilute CCl_4 solution. Full optimization curve analysis was applied to all spectra for separation of the overlapping absorption bands.

2: $\text{R}^1 = \text{H}$, $\text{R}^2 = \text{H}$

3: $\text{R}^1 = \text{Me}$, $\text{R}^2 = \text{H}$

4: $\text{R}^1 = \text{Me}$, $\text{R}^2 = \text{Me}$

EXPERIMENTAL

S-145, 2 and 5 were prepared as reported elsewhere.^{12, 17} Compound 2 was treated with sodium hydride and methyl iodide to obtain 4. Compound 3 was obtained by hydrolysis of 4. Compound 1 was synthesized from S-145 by the same method. Compounds 1 and 3-5 were dissolved in CCl_4 at a concentration (c) below 5×10^{-5} mol dm^{-3} (cell length (l) = 5.0 cm), which does not lead to the formation of intermolecular hydrogen bonds between functional groups, except for the carboxylic acid dimer.^{10,11} FTIR spectra were recorded on a Nicolet 20 SXB FTIR spectrometer at 27°C. Purification of CCl_4 , operation for the solution and curve-fitting calculation for peak separation were as previously described.¹⁰ The percentages (N) of non-hydrogen-bonded molecules and (σ) of dimers for 1, 3 and 5 were estimated by the following approximation: the values of the molar absorption coefficients ($\epsilon/\text{mol}^{-1} \text{dm}^3 \text{cm}^{-1}$) of the free and dimer $\nu_{\text{C=O}}$ bands for the carboxyl group in these compounds are equal to those of lauric acid [$\text{CH}_3(\text{CH}_2)_{10}\text{CO}_2\text{H}$]. In CCl_4 solution, the ϵ values of the free ν_{OH} band at 3533 cm^{-1} and the free $\nu_{\text{C=O}}$ band at 1759 cm^{-1} and the ϵ value per $\nu_{\text{C=O}}$ band of the dimer at 1711 cm^{-1} for lauric acid are 178.4, 501.9 and 822.6, respectively.¹⁰

RESULTS AND DISCUSSION

The spectral data in 1 and 3-5 and their assignments are listed in Table 1, together with the $\Delta\nu$, N, σ , ρ and S values, where ρ is the percentage of the intramolecular hydrogen-bonded molecules and S is

TABLE 1. FTIR Data^a for 1 and 3-5 in CCl_4 Solution

Compd.	Assign. ^b	ν / cm^{-1}	$\epsilon / \text{mol}^{-1} \text{dm}^3 \text{cm}^{-1}$	$\Delta\nu_{\frac{1}{2}} / \text{cm}^{-1}$	$A / 10^{-8} \text{cm}^2 \text{s}^{-1} \text{molecule}^{-1}$	$Nc / \%$	$\rho^d / \%$	$\sigma^e / \%$	$Sf / 10^{-5} \text{mol dm}^{-3}$	$c /$
1	ν_{OH}	F	3531.9	133.9	24.0	42.7				14
		H	<i>g</i>							3.0138
	$\nu_{\text{C=O}}$	F	1758.2	412.0	18.0	98.4	82.1	7.6		
3		F^h	1740.4	69.1	17.3	17.5				
		D	1709.8	84.7	13.9	14.7				
	ν_{OH}	F	3533.2	131.1	23.1	39.8				
4		H	3336.4	27.7	93.1	34.3				
	$\nu_{\text{C=O}}$	F	1758.8	367.7	18.5	88.1	73.3	15.7		
		F^h	1739.2	107.0	20.0	26.1				
4		D	1710.7	90.4	14.3	17.2				
	$\nu_{\text{as SO}_2}$	F	1351.7	425.0	11.7	68.6				
		F^h	1741.6	536.8	16.0	121.8				4.6096
4	$\nu_{\text{as SO}_2}$	F	1352.0	508.5	12.1	85.3				

5	ν_{OH}	F	3532.1	63.6	24.4	21.0	14	3.1688
	H		3196.1	52.3	276.9	176.4		
ν_{NH}	F	3452.6	52.8	22.1	16.9			
$\nu_{C=O}$	F	1760.0	237.9	16.4	51.8			
	F ^h	1740.7	202.2	29.8	76.1			
D		1709.8	28.7	15.0	5.8			
$(\nu_{C=O})F$		1669.2	317.5	15.7	59.7			
H		1646.8	288.4	18.7				

^a ν , ϵ , $\Delta\nu_{\frac{1}{2}}$ and A are the band frequency, the molar absorption coefficient, the band width at half-intensity and the integrated intensity, respectively. ^b ν_{OH} , $\nu_{C=O}$, ν_{SO_2} , and ν_{NH} show OH, C=O, antisymmetric SO₂ and NH stretching vibration, respectively, $\nu_{C=O}$ in parenthesis is the C=O stretching vibration of the benzoyl amino group and F, H and D also show free, intramolecular hydrogen-bonded and dimer bands, respectively. ^c Percentage (N) of non-hydrogen-bonded molecules, $N = (\epsilon/501.9)100$, where 501.9 is the ϵ value of 100% free $\nu_{C=O}$ band of lauric acid. ^d Percentage (ρ) of intramolecular hydrogen-bonded molecules, $\rho = 100 - (N + \sigma)$. ^e Percentage (σ) of dimer molecules, $\sigma = (\epsilon/822.6)100$, where 822.6 is the ϵ value per $\nu_{C=O}$ band of dimer for lauric acid. ^f Size of the ring formed by the intramolecular hydrogen bond. ^g The exact parameters could not be obtained because the band was weak. ^h Type IX.

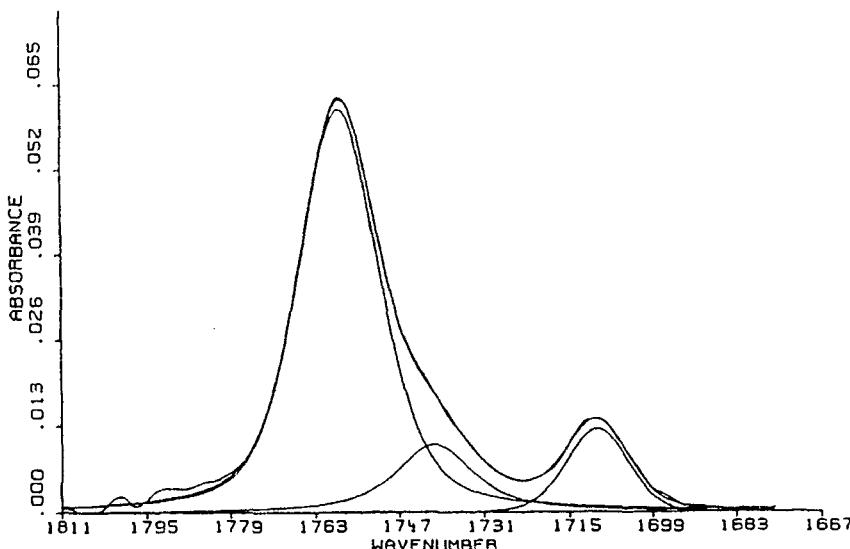


FIG. 1. FTIR spectrum of 1 at 3.0138×10^{-5} mol dm⁻³ in CCl₄ solution in a 5.0-cm cell and the result of peak separation of the spectrum.

the size of the ring formed by the hydrogen bond. The FTIR spectra of 1, 3 and 5 and the results of the peak separation of their spectra are shown in Figures 1-3, respectively. In general, the formation of the intramolecular hydrogen bond Z-H...O=Y causes a shift of the ν_{ZH} and $\nu_{Y=O}$ bands to lower wavenumber.

Since S-145 which forms the cyclic intramolecular hydrogen bonds VI showed the high ρ value of 89% in CCl₄ solution,¹⁰ it is presumed that its *N*-methylated compound 1 also forms a certain amount of intramolecular hydrogen bond of the IX type, although there is only one hydrogen bond in IX. As shown in Figure 1, 1 exhibits the $\nu_{C=O}$ band at 1740 cm⁻¹ other than the free $\nu_{C=O}$ band

at 1758 cm^{-1} and the dimer $\nu_{\text{C=O}}$ band at 1710 cm^{-1} for the carboxyl group. This suggests that 1 forms an intramolecular hydrogen bond of the IX type. In order to confirm this result, the FTIR spectra of *N*-methylated compound 3 of chain analogue 2 was investigated because 2 ($\rho = 95\%$), which forms a cyclic intramolecular hydrogen bond VI similar to that of S-145, shows the highest ρ value in the compounds examined.¹²

For 3 as shown in Figure 2, the intensities of the free ν_{OH} band at 3533 cm^{-1} and the free $\nu_{\text{C=O}}$ band at 1759 cm^{-1} for the carboxyl group decreased and new bands appeared at lower wavenumbers (3336 and 1739 cm^{-1}), respectively. In addition, compared with the ϵ value of the $\nu_{\text{as SO}_2}$ band at 1352 cm^{-1} for the sulphonyl group in 4 which is incapable of hydrogen bonding, a decrease of 16% was found for the corresponding band of 3. This value agrees well with the ρ value. For 1 and 3, the $\nu_{\text{C=O}}$ bands were not observed at wavenumbers higher than 1760 cm^{-1} , indicative of the *trans*-carboxyl group.¹⁻⁴ From these findings, it is clear that an intramolecular hydrogen bond of the IX type involving the 14-membered ring in 1 and the 17-membered one in 3 in CCl_4 solution is formed between the OH bond of the carboxyl group and the oxygen atom of the sulphonyl group. In 1 and 3, the ρ values of 8 and 16% were much smaller than those of S-145 and 2, respectively, because there is only one hydrogen bond in both 1 and 3.

It was presumed that 5 does not form cyclic intramolecular hydrogen bond similar to S-145 but forms intramolecular hydrogen

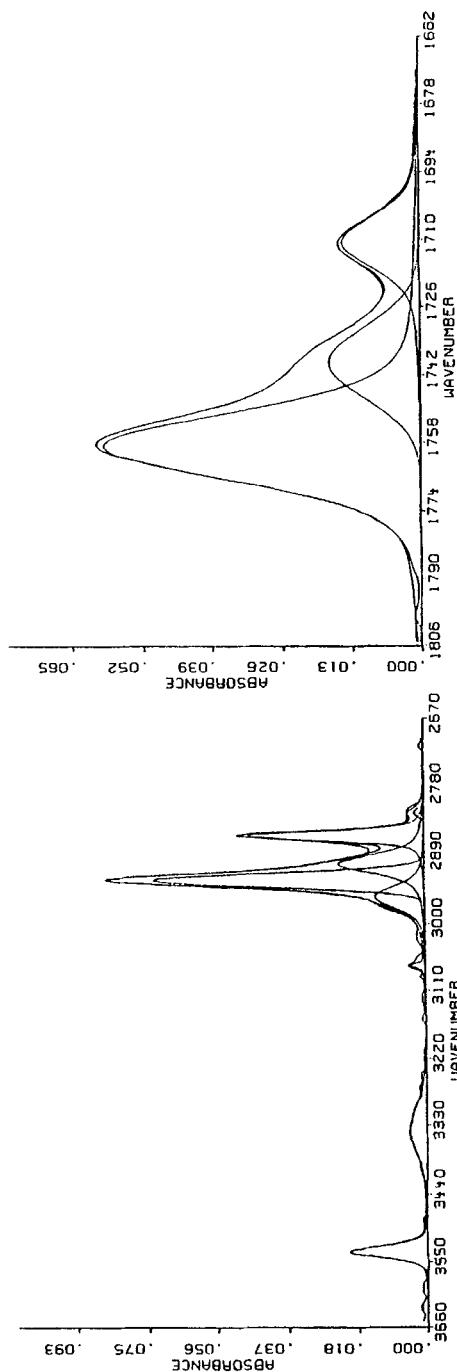
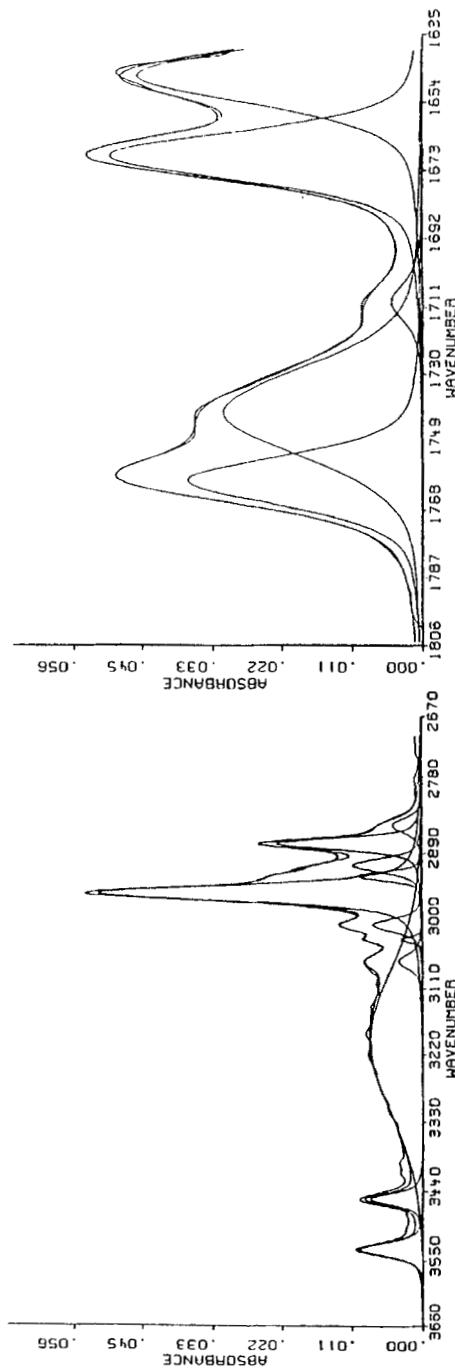
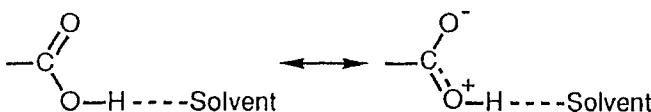
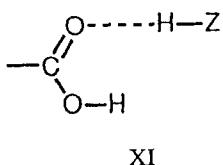


FIG. 2. FTIR spectra of **3** at 3.2474×10^{-5} mol dm⁻³ in a 5.0-cm cell and the results of peak separation of their spectra.

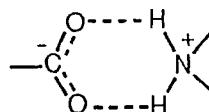
bond of the IX type, because *N*-monosubstituted benzamides take the *trans*-structure X.²¹ The integrated intensity ($A/10^{-8} \text{ cm}^2 \text{ s}^{-1} \text{ molecule}^{-1}$) of 16.9 and the ϵ value of 53 were observed for the free ν_{NH} band at 3453 cm^{-1} for the benzoylamino group in 5. The former value agrees well with 18.3 (3456 cm^{-1}) for *p*-MeOC₆H₄CONHPrⁱ and 17.9 (3450 cm^{-1}) for *p*-ClC₆H₄CONHPrⁱ.²² The latter value is also in close agreement with 56 (3462 cm^{-1}) for PhCONHBuⁿ, 55 (3466 cm^{-1}) for PhCONHBuⁱ and 55 (3452 cm^{-1}) for PhCONHBut.²³ These results indicate that the NH bond of the benzoylamino group in 5 is not intramolecularly hydrogen-bonded to oxygen atoms of the carboxyl group.

For 5 as shown in Figure 3, the intensities of the free ν_{OH} band at 3532 cm^{-1} and the free $\nu_{\text{C=O}}$ band at 1760 cm^{-1} for the carboxyl group and of the free $\nu_{\text{C=O}}$ band at 1669 cm^{-1} for the benzoylamino group appreciably decreased and new bands appeared at lower wavenumbers (3196 , 1741 and 1647 cm^{-1}), respectively. It is obvious from these results that an intramolecular hydrogen bond of the IX type involving the 14-membered ring in 5 in CCl₄ solution is formed between the OH bond of the carboxyl group and the oxygen atom of the benzoylamino group. The ρ value of 5 is estimated to be 49%, which is much larger than that of 1 in spite of the 14-membered ring. For 1, 3 and 5, the $\nu_{\text{C=O}}$ band of the carboxyl group was found to shift to lower wavenumber (ca. 19 cm^{-1}) due to formation of an intramolecular hydrogen bond of the IX type. This trend is contrary to that of RCOCO₂H and ROCH₂CO₂H mentioned in the Introduction.¹⁻⁴


FIG. 3. FTIR spectra of **5** at 3.1688×10^{-5} mol dm $^{-3}$ in CCl $_4$ solution in a 5.0-cm cell and the results of peak separation of their spectra.

When an intermolecular hydrogen bond of the IX type is formed between $\text{CCl}_3\text{CO}_2\text{H}$ and a hydrogen-bonding solvent, its $\nu_{\text{C}=\text{O}}$ band is shifted to lower wavenumbers.²⁰ This shift has been also reported to be attributable to resonance, as can be seen in the following equation, where the double-bond character of the $\text{C}=\text{O}$ bond decreases, causing to a shift of the $\nu_{\text{C}=\text{O}}$ band to lower wavenumbers.²⁰ Accordingly, the



main factor for the shift to lower wavenumbers of *ca.* 19 cm^{-1} observed for 1, 3 and 5 is considered to be due to a similar resonance.

An intramolecular hydrogen bond of the XI type can also be formed in chain compounds having a non-vicinal carboxyl group and a Z-H bond. However, these chain compounds formed cyclic intra-

XI

XII

molecular hydrogen bonds of the V and XII types when Z was an oxygen and a nitrogen atom, respectively.¹⁰⁻¹² In general, the smaller the electronegativity of the Z atom, the weaker is the hydrogen bonding interaction ability in the Z-H bond. From these findings, it is thought that little of the intramolecular hydrogen bond of the XI type is formed.

In conclusion, we found that **1**, **3** and **5** form intramolecular hydrogen bonds of the IX type and the $\nu_{C=O}$ bands of their carboxyl groups shift to lower wavenumbers in spite of the fact that the C=O bond of the carboxyl group does not form the hydrogen bond. This information should be helpful for elucidating the intramolecular hydrogen bonds of prostaglandin-related compounds such as 15-keto-prostaglandins.

REFERENCES

1. Ōki M., Hirota M. Bull. Chem. Soc. Jpn. 1960; 33: 119.
2. Ōki M., Hirota M. Bull. Chem. Soc. Jpn. 1961; 34: 374, 378.
3. Ōki M., Iwamura H. Bull. Chem. Soc. Jpn. 1962; 35: 283.
4. Ōki M., Hirota M. Spectrochim. Acta 1961; 17: 583.
5. Hollenstein H., Akermann F., Günthard H. H. Spectrochim. Acta 1978; A34: 1041.
6. Redington R. L., Liang Ch. K. J. J. Mol. Spectrosc. 1984; 104: 25.
7. Hollenstein H., Ha T.-K., Günthard H. H. J. Mol. Struct. 1986; 146: 289.
8. Ōki M., Hirota M. Bull. Chem. Soc. Jpn. 1964; 37: 209.
9. Wiberg K. B., Laidig K. E. J. Am. Chem. Soc. 1987; 109: 5935.
10. Takasuka M., Yamakawa M., Watanabe F. J. Chem. Soc., Perkin Trans. 2 1989; 1173.
11. Takasuka M., Yamakawa M., Ohtani M. J. Chem. Soc., Perkin Trans. 2 1990; 1467.
12. Takasuka M., Yamakawa M., Ohtani M. J. Med. Chem. 1991; 34: 1885 (Part 3).
13. Takasuka M., Ezumi K., Yamakawa M. J. Chem. Soc., Perkin Trans. 2 1992; 29.

14. Takasuka M., Saito T., Yamakawa M. *J. Chem. Soc., Perkin Trans. 2* 1991; 1513.
15. DiMinno G., Bertele V., Bionchi L., Barbieri B., Cerletti C., Dejana E., Gaetano G. D., Silver M. *J. Thromb. Haemostasis* 1981; 45: 103.
16. Bundy G. L. *Tetrahedron Lett.* 1975; 1957.
17. Narisada M., Ohtani M., Watanabe F., Uchida K., Arita H., Doteuchi M., Hanasaki K., Kakushi H., Otani K., Hara S. *J. Med. Chem.* 1988; 31: 1847.
18. Suga H., Hamanaka N., Kondo K., Miyake H., Ohuchida S., Arai Y., Kawasaki A. *Adv. Prostal. Thromb. Leukotri Res.* 1987; 17: 799.
19. Chang Y.-T., Yamaguchi Y., Miller W. H., Schaefer III H. F. *J. Am. Chem. Soc.* 1987; 109: 7245.
20. Nicolet P., Laurence C., Lucon M. *J. Chem. Soc., Perkin Trans. 2* 1987; 483.
21. Rao C. N. R., Rao K. G., Goel A., Balasubramanian D. *J. Chem. Soc. (A)* 1971; 3077.
22. Nyquist R. N. *Spectrochim. Acta* 1963; 19: 509.
23. Nikolić A. D., Rozsa-Trarjani M., Komaromi A., Csanadi J., Petrovic S. D. *J. Mol. Struct.* 1992; 267: 49.

Date Received: December 28, 1992

Date Accepted: January 15, 1993